Optimal Investment and Bounded Ruin Probability: Constant Portfolio Strategies and Mean-variance Analysis1 By

نویسندگان

  • RALF KORN
  • ANKE WIESE
چکیده

We study the continuous-time portfolio optimization problem of an insurer. The wealth of the insurer is given by a classical risk process plus gains from trading in a risky asset, modelled by a geometric Brownian motion. The insurer is not only interested in maximizing the expected utility of wealth but is also concerned about the ruin probability. We thus investigate the problem of optimizing the expected utility for a bounded ruin probability. The corresponding optimal strategy in various special classes of possible investment strategies will be calculated. For means of comparison we also calculate the related meanvariance optimal strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Financial Risk Modeling with Markova Chain

Investors use different approaches to select optimal portfolio. so, Optimal investment choices according to return can be interpreted in different models. The traditional approach to allocate portfolio selection called a mean - variance explains. Another approach is Markov chain. Markov chain is a random process without memory. This means that the conditional probability distribution of the nex...

متن کامل

Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model

Consider an insurer who is allowed to make risk-free and risky investments. The price process of the investment portfolio is described as a geometric Lévy process. We study the tail probability of the stochastic present value of future aggregate claims. When the claim-size distribution is of Pareto type, we obtain a simple asymptotic formula which holds uniformly for all time horizons. The same...

متن کامل

Optimal Deterministic Investment Strategies for Insurers

We consider an insurance company whose risk reserve is given by a Brownian motion with drift and which is able to invest the money into a Black–Scholes financial market. As optimization criteria, we treat mean-variance problems, problems with other risk measures, exponential utility and the probability of ruin. Following recent research, we assume that investment strategies have to be determini...

متن کامل

Comparison of Mean Variance Like Strategies for Optimal Asset Allocation Problems

We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic vari...

متن کامل

Comparison of Mean Variance Like Strategies for Optimal Asset

5 We determine the optimal dynamic investment policy for a mean quadratic variation ob6 jective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial 7 differential equation (PDE). We compare the efficient frontiers and optimal investment poli8 cies for three mean variance like strategies: pre-commitment mean variance, time-consistent 9 mean variance, and mean quad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008